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Abstract

Many efforts have been taken to train spiking neural net-
works (SNNs), but most of them still need improvements
due to the discontinuous and non-differential characteristics
of SNNs. While the mammalian brains solve these kinds of
problems by integrating a series of biological plasticity learn-
ing rules. In this paper, we will focus on two biological plau-
sible methodologies and try to solve these catastrophic train-
ing problems in SNNs. Firstly, the biological neural network
will try to keep a balance between inputs and outputs on both
the neuron and the network levels. Secondly, the biological
synaptic weights will be passively updated by the changes
of the membrane potentials of the neighbour-hood neurons,
and the plasticity of synapses will not propagate back to oth-
er previous layers. With these biological inspirations, we pro-
pose Voltage-driven Plasticity-centric SNN (VPSNN), which
includes four steps, namely: feed forward inference, unsuper-
vised equilibrium state learning, supervised last layer learn-
ing and passively updating synaptic weights based on spike-
timing dependent plasticity (STDP). Finally we get the accu-
racy of 98.52% on the hand-written digits classification task
on MNIST. In addition, with the help of a visualization tool,
we try to analyze the black box of SNN and get better under-
standing of what benefits have been acquired by the proposed
method.1

Introduction
Neural network models are essential for developing Artifi-
cial Intelligence, since they are inspired by the brain at mul-
tiple levels of details and practically useful in many applica-
tion areas. Deep neural networks (DNNs) and Spiking Neu-
ral Networks(SNNs) have attracted many attentions for d-
ifferent reasons. DNNs have shown their success on visual
and audio recognition, natural language processing (LeCun,
Bengio, and Hinton 2015), even on decision oriented learn-
ing tasks such as Atair 2600 games (Mnih et al. 2015) and
the game Go (Silver et al. 2016). In different types of DNNs,
the feed-forward type (e.g. convolutional DNN) is designed
mainly for the abstraction of spatial information, and the re-
current type (e.g. long-short term memory DNN) is designed
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mainly for the process of temporal information. While SNNs
are more biologically plausible, hence more natural to in-
terpret the information processing mechanisms of the brain,
and are relatively energy efficient.

The underlying theories of DNNs are considered to be
inspired by the brain from various perspectives. The con-
volutional neural network is considered to be inspired by
the visual cortical processing of mammalian brain (Le-
Cun, Bengio, and Hinton 2015). The recurrent neural net-
work learns from the Hopfield network which gets the in-
spiration from the hippocampus CA3 (Zhang et al. 2016).
Many other versions of DNNs are also powered by differ-
ent brain mechanisms, such as attention (Xu et al. 2015;
Zhang, Zeng, and Xu 2016), memory (Sukhbaatar et al.
2015; Zhang et al. 2016), equilibrium states (Scellier and
Bengio 2017) which have shown their effectiveness on many
specific tasks.

The principles of neurons, synapses and networks in bio-
logical systems are more complex than these in DNNs (Has-
sabis et al. 2017; Helmstaedter 2015). For example, it has
been proved that the function of a single biological neuron
with complex dendritic branches needs a three-layered ar-
tificial neural network which is composed of hundreds of
hidden-layer neurons to simulate (Hausser and Mel 2003).
From this perspective, one possible way to improve DNNs
is turning to biological neural networks.

The spiking neural networks are considered to be the
third generation of neural networks which are more power-
ful on the processing of both spatial and temporal informa-
tion (Maass 1997). Firstly, the neuron models are more bio-
logically realistic, and the neuron will not be activated until
the membrane potential reach the threshold (e.g. the leaky-
integrated and fire model (LIF) makes SNNs more energy
efficient). Secondly, the membrane potential will be nonlin-
ear leaky or increased with different inputs, which makes
SNN good at processing nonlinear information. Thirdly, the
synaptic weights between neurons are time-sensitive and
will be changed according to the relative arriving time of
pre- and post-synaptic neuron spikes, which makes SNN
easier to process both spatial and temporal information.
Fourthly, different computing costs in neurons and synapses
cause various kinds of time delays which will contribute to
the asynchronous computation of SNN.

Due to the relevance with the biological brain from the



mechanism perspective, ideally SNNs should be powerful
and efficient. However, since the nature of spiking neuron-
s is non-linear and discontinuous, they are difficult to be
tuned by current back propagation methodology. Many ef-
forts have been taken to deal with this catastrophic training
problem.

Diehl et al. trained an artificial neural network (AN-
N) with the limitation of minor range of weights and no
mathematically additional biases. This effort limits synap-
tic weights in a linear range so that the ANN could be
converted directly into a linear SNN classifier (Diehl et al.
2015). Even though this method could achieve the perfor-
mance of 98.48% on 10-class hand-written digit classifica-
tion task MNIST (i.e. Modified National Institute of Stan-
dards and Technology), the performance of SNN is actually
contributed by ANN from back propagation instead of pure
SNN learning. Similar to Diehl et al., Lee et al. think the
discontinuities between spikes could be considered as nois-
es, and the SNN without noises are continuous which could
use back propagation for training. Lee et al. tested the idea
on MNIST dataset and got 98.64% on classification accura-
cy (Lee, Delbruck, and Pfeiffer 2016).

SpikeProp is another effort which makes the equivalent
exchange from spatial information (e.g. fire rates) in ANN
to the temporal information (e.g. timing of inter-spike inter-
vals) in SNN. This effort successfully converts the spatial
back propagation in ANN into the temporal back propaga-
tion in SNN (Bohte, Kok, and La Poutre 2002). However,
the problem of non-differential characteristics of SNN still
exists, which has limited further improvements of SNNs on
performance of both accuracy and efficiency.

Instead of tuning back propagation of DNN to fit for
SNN, some challenging efforts try to directly use biologi-
cally plausible rules to train SNNs.

Zeng et al. (Zeng, Zhang, and Xu 2017) have proposed
seven biologically plausible rules to train multi-layer SNN
with LIF neurons. It has been proved that the synaptic
weights in first few layers could be dynamically updated by
STDP rules without any supervision, and the weights be-
tween the final two layers could be supervised and learned
by Hebb’s law. Diehl et al. have also trained a standard SNN
by unsupervised STDP learning rule, but that effort could
only train a two layers SNN and the performance is 95% on
MNIST (Diehl and Cook 2015).

In this paper, we will firstly introduce the characteristics
of spatial and temporal information processing in SNN, and
then introduce an efficient Voltage-driven Plasticity-centric
methodology to train non-differential SNN with LIF neu-
rons. The proposed model contains four parts, namely: feed
forward inference, unsupervised equilibrium state learning,
supervised last layer learning and passively updating synap-
tic weights based on STDP. The first two parts are unsuper-
vised, in which the membrane potential of neurons in each
layer will be updated by feed forward streams and equilib-
rium conditions. The third part is supervised, in which the
one-dimensional gradient descent in last two layers is cal-
culated with the support of teaching signals. The fourth part
is unsupervised, in which the synaptic weights are passively
updated by STDP rule. Experimental results show that the

model could get 98.52% on classification accuracy on M-
NIST dataset.

The Architecture of SNN
The complexity of SNN architecture is from its different s-
cales. On the neuron scale, various details we considered for
the construction of a single excitatory or inhibitory neuron
will contribute different dynamics to SNNs. On the network
scale, different proportions of connection types (e.g. recur-
rent or feed forward) will also affect the network character-
istics. In this paper, we focus on the biological LIF neuron
model and the multi-layer feed-forward SNN architecture.

Basic LIF Neuron
With the biological plausible characteristics of discontinu-
ous membrane potential, the biologically inspired LIF model
has been widely used in many computational neuroscience
tasks. The LIF membrane potential will be dynamically in-
creased when excitatory presynaptic spikes arrive, and the
neuron will fire once the membrane potential exceeds the
firing threshold, after that the neuron will turn back to the
resting state of membrane potential until the end of refracto-
ry time, as shown in Fig 1.
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Figure 1: The LIF neuron with discontinuous spikes

Cm
dV

dt
= −gL (V − VL) + Isyn (1)

The dynamical function of membrane potential in LIF is
shown in Equation (1). The Cm is the membrane capaci-
tance, the gL is the leaky conductance, VL is the leaky po-
tential, and Isyn is the input stimulus from presynaptic neu-
ron. Assume that the total excitatory conductance is gE , the
reversal potential is VE , and make τm = Cm

gL
, then the E-

quation (1) could be converted to Equation (2),

τm
dV

dt
= − (V − VL)− gE

gL
(V − VE) (2)

τE
dgE
dt

= −gE + η
∑
j∈NE

wj,iδt (3)

The gE in Equation (2) will be dynamically changed, as
Equation (3) shows, whenever the pre-synaptic neurons fire,



the gE will be non-linearly increased by the number of in-
put spikes. δt is the pre-synaptic inputs (in the next step it
will be updated into non-differential potential Vj in Equa-
tion (5)), η is the learning rate, τE is the conductance decay
of excitatory neurons, and w(j, i) is the connection weight
from pre-synaptic neuron j to the target neuron i.

if (V > Vth)

{
V = VL
Tref = T0

(4)

The increased membrane potential V will be reset to rest-
ing potential after firing, as shown in Equation (4), and the
refractory time Tref will be extended to a larger T0.

The Multi-layer SNN

As shown in Fig 2, a multi-layer feed-forward SNN (for sim-
plicity here we use three-layer SNN) could be separated into
three parts: the first part is the input layer with sequential
spikes input; the second part is hidden layers with the ability
of transformation of non-linear and discontinuous features;
the third part is the output layer for the signal selection with
the help of teacher signal.

First Layer Second Layer Third Layer

STDP, Range=1ms

Teacher Signal

V
j

V
i
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Figure 2: The architecture of an SNN

The Learning Methodology of SNN
Since the spikes and membrane potentials in SNN are usual-
ly non-linear and discontinuous, directly tuning their values
by artificial back propagation will be challenging. Inspired
by the tuning methodology in biological networks, in which
the update of synaptic weights is passively changed by the
temporal activities of connected neurons (e.g. pre- and post-
synaptic neuron spikes), here we change the view of synaptic
learning into the view of membrane potential learning. From
this perspective, a new four-step SNN learning algorithm is
proposed to deal with the catastrophic training problem in
SNN. In the first two steps, the unsupervised membrane po-
tential learning will be applied. In the third step, the neuron
membrane potential in last two layers will be updated by
teaching signals. In the fourth step, the STDP (or differen-
tial Hebb′s law) is used to passively update the synapses
between dynamical neurons.

Feed Forward Inference in SNN
The input spikes will flow and pass three layers respectively.
In each neighborhood layers, the information will conver-
gent from pre-synaptic neurons into the post-synaptic neu-
rons. As the first two layers for example, we set the states of
pre-synaptic neurons in the first layer as Vj , and the states of
post-synaptic neuron in the second layer as Vi.
τm

dVi

dt = − (Vi − VL)− gE
gL

(Vi − VE)

τE
dgE
dt = −gE + η

∑N
j wj,iVj

Vi = VL, Tref = T0 if (Vi > Vth)

V FF
i = Vi

(5)
As shown in Equation (5), the inputs will have feed for-

ward transmission to the next layer and dynamically change
the states of the neurons (i.e. membrane potential V FF

i ).
Then the information will go on until it arrives at the output
layer. In the training procedure, the propagation of feed for-
ward information will integrate with equilibrium state learn-
ing and supervised learning as three main motivations of dy-
namically changing of neuron membrane potentials. While
after training, only rule one will be left for the sequential
inference tests.

Unsupervised Hierarchical Equilibrium State
Learning in SNN
Actually there are two kinds of equilibrium states in SNN.
For temporal equilibrium state, the membrane potentials will
be attracted into equilibrium states as time goes on, for ex-
ample the VE in Equation (5). Another is spatial equilibrium
state learning which describes the equilibrium of the input
and output of the neurons. In the training procedure, the net-
work will converge repeatedly until it stops at a static point,
which means that the total updates of weights will be small-
er and smaller as the training time going on, and finally the
network will stop at equilibrium membrane potential states.
The unsupervised equilibrium state learning will make the
network ready for classification tasks in next two steps. The
analysis of the role of it on network learning will be intro-
duced in the next Section.
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Figure 3: The neuron with equilibrium state in feed forward
SNN

Fig 3 shows the building block of a feed forward SNN. We
set the pre-synaptic neurons as neuron j and post-synaptic
neuron as neuron i. The equilibrium state of neuron i (i.e.
Ei) could be set as:



∆Ei = Vi −

 N∑
j

wj,iVj − Vth,i

 (6)

Here ∆Ei = dEi

dt is defined as the differential equilibri-
um state. The first term after equal is the current membrane
potential of neuron i. The second term is the future mem-
brane potential of neuron i which integrates all of the inputs
from pre-synaptic Vj . The network will learn dynamically
towards network convergence which also means the equilib-
rium state for each neuron. With training time going by, the
current states and next states of neurons will become equiva-
lent, which means the ∆Ei will be around zero. Considering
that the membrane potential Vi has already take the place of
w(j, i) on network tuning, we update Equation (6) into E-
quation (7) according to the differential chain rule.

dEi

dVi
=
dEi

dt
× dt

dVi
=
Vi −

(∑N
j wj,iVj − Vth,i

)
dVi

dt

(7)

Then we add non-linear Equation (2) into Equation (7),
and we could get Equation (8).

dEi

dVi
=

Vi −
(∑N

j wj,iVj − Vth,i
)

− (Vi − VL)− gE
gL

(Vi − VE)
τm (8)

Here we use Ei to represent the equilibrium state of each
single neuron. From Equation (8), the update of neuron
membrane potential will decrease the whole network equi-
librium state E =

∑N
i Ei, and we could consider this state

as one kind of the energy in SNN.

Ei =

∫ Vmax

Vmin

Vi −
(∑N

j wj,iVj −
∑N

j Vth,i

)
− (Vi − VL)− gE

gL
(Vi − VE)

τmdVi (9)

The continuous Equation (9) could be approximately
represented by the discrete Equation (10) through Euler
method. The V ES

i is the updates of membrane potential on
Vi in equilibrium states part. And the ηi is the learning rate
which contains the variable τm.

∆V ES
i = −ηi

Vi −
(∑N

j wj,iVj −
∑N

j Vth,i

)
− (Vi − VL)− gE

gL
(Vi − VE)

(10)

Finally, we could get rules to update each neuron state
Vi. With the integration of unsupervised feed-forward learn-
ing in Equation (5) and Equation (10), we could update the
whole SNN membrane potential states Vi towards the con-
vergence characteristics, as shown in Equation (11).

∆Vi =
t

T
∆V FF

i +

(
1− t

T

)
∆V ES

i (11)

The t is the training time slot and T is the total training time
in SNN learning. ∆V FF

i is the change of neuron states in
feed forward step, while the ∆V ES

i is the state change in

equilibrium state step. The total ∆Vi will be the integration
of these two steps, and the proportion of feed forward states
will be increased while the equilibrium state is decreased
with the training time pass by.

Supervised Learning in Last Two Layers in SNN
Both feed forward and equilibrium state procedures are un-
supervised, and the network will converge into static states
after unsupervised training. However, the network will not
show any specific functions (e.g. recognition or classifica-
tion) without the step of supervised learning. Here we add
teaching signals into the last layer of SNN in the training
procedure. The teaching signals is actually the fixed frequen-
cy stimulus, the intervals of them are the same with that of
input signals. Since the error signals in the third layer could
not back propagate to the first and second layers, it could be
considered as a very weak supervised learning rule.

C =

L3∑
i=1

(Vi − VT )
2 (12)

dC

dVi
= (Vi − VT ) (13)

dVi = −ηc (Vi − VT ) (14)

As shown in Equation (12), the error of SNN is the inte-
gration of the divergence of realistic neuron state Vi with the
teacher signal state VT . ηc is the learning rate,L3 is the num-
ber of neurons in the last layer. Different from the traditional
ANN, in which the gradient descent will be calculated iter-
atively in each layer during the back propagation procedure,
as shown in Equation (13) and Equation (14), we only use
one time for differential calculation on final layer of SNN.
This procedure could also be replaced by Hebb’s law.

The Passive Update of Synaptic Weights based on
STDP in SNN
There are various kinds of STDP rules (Dan and Poo 2004;
Bi and Poo 2001). Take performance into consideration, we
use a specific kind of STDP expression (Bengio et al. 2015a;
2015b) which describes an idea of STDP as presynaptic ac-
tivity times rate of change of post-synaptic activity.

∆wj,i ∝ VjV
′

i (15)

V
′

i is the derivative value of Vi. The reason why we use dif-
ferential membrane potential STDP is that it could represent
or process spikes or membrane potential states at the same
time. With STDP rules the synaptic weights could be pas-
sively updated by the changes of the pre and post synaptic
neuron states.

The Learning Architecture of SNN
The membrane potential states in SNN will be dynamically
changed in the unsupervised and supervised training proce-
dure, and then the weights of SNN will be passively updated
based on the pre and post synaptic neuron states by STDP
rules. The detailed procedure of training SNN is shown in
Algorithm 1.



Algorithm 1 The Algorithm of SNN Learning.
1. Spatial and temporal data normalization and variables initia-
tion. Initialize the multi-layer feed forward network, LIF neuron
model, weight wj,i with random uniform distribution, and neu-
ron membrane potential states Vi. Set iteration time Iite, simu-
lation time T , differential time ∆t, learning rate η and ηc;
2. Start Training procedure:
(1). Load training samples;
(2). Update V FF

i by Equation (5) during the feed forward infer-
ence learning;
(3). Update V ES

i by Equation (10) during the unsupervised e-
quilibrium state learning;
(4). Integrate V FF

i and V ES
i by Equation (11);

(5). Update Vi by Equation (14) with supervision;
(6). Passively update synaptic weights wj,i by Equation (15).
(7). Iterative training from Step (2) to Step (6), save final wj,i.
3. Start test procedure:
(1). Test the performance of trained SNN with only feed forward
step based on saved wj,i.
(2). Output the performance of test samples without cross vali-
dation;
4. End SNN learning.

The Experimental Results
The proposed SNN learning model is a new kind of non-
differential network tuning method. Its potential will cov-
er both the spatial and temporal information processing.
Many related works have shown that the SNN could be fi-
nally convergent by the restrictions from biological inspired
rules (Zeng, Zhang, and Xu 2017). Here we use MNIST
dataset to test the functional performance of the SNN with
the proposed tuning method.

The MNIST Task Dataset
The Modified National Institute of Standards and Technolo-
gy (MNIST) dataset with ten classes of hand-written digits
(from zero to nine) is used to test the performance of the pro-
posed SNN algorithm. As shown in the left of Fig 4, the o-
riginal MNIST data contains 60,000 images for training and
10,000 images for test. Normally, the MNIST dataset will be
directly added into the model without any pre-precessing.
However, in SNN architecture, the membrane potential of
neurons are dynamically changed as time goes by, and the
synapses are also updated with the specific differential time
of pre and post neural spikes. The traditional spatial-based
MNIST dataset is no longer fit for the SNN task.

As shown in the right of Fig 4, with the random sub-
sampling of original MNIST dataset, we could get differ-
ent sub-image of original images. In addition, we package
these sub-images as image streams which are with spatial
and temporal characteristics and could be the input of SNN.

The Training and Test of SNN
We firstly train the SNN with sub-image streams as shown
in the right of Fig 4 in a three-layer network architecture.
The neurons in the first, second, third layers are 784, N and
10 respectively, in which N is the number of hidden neurons
which is tested from 50 to 1000, as shown in Figure 6. The

Figure 4: Original (left) and preprocessed (right) data

training method is shown in Algorithm 1. Here we use stan-
dard 60,000 MNIST data to train and another 10,000 to test
(no cross validation). In test procedure, only feed-forward
procedure is kept (i.e. equilibrium state learning and super-
vised learning are blocked), the tested images are added into
the SNN one by one and the output neuron id with the largest
number of spikes is selected as the output class.

Figure 5: Samples for correctly (left) and incorrectly (right)
classified images by SNN

After training and test on SNN, random samples of cor-
rect classification results on MNIST is shown in the left of
Fig 5, from which we could observe that for most of the nor-
mal characters, SNN could recognize well. Further more, as
shown in the right of Fig 5, incorrect results by SNN are also
big challenges for human.

In addition, we also test the performance of three-layer
SNN on different number of hidden neurons. We set iteration
time as 100, the patch size as 10, and the learning rate as
0.05. The accuracies of SNNs on MNIST classification task
are shown in Fig 6.

We observe from Fig 6 that: (1) the accuracy will general-
ly be increased with more iteration times, and will be finally
convergent and stop at a stable value; (2) the accuracies be-
tween different architectures are different, and usually the
network with more hidden neurons will have better perfor-
mance. So the accuracies of SNN will be dependent on both
the specific iteration time and network structure. Here we
will select the best accuracy value within iteration times as
the performance of this kind of architectures.

In addition, for the different architectures, as shown in
Fig 7, the best accuracy of them is 98.52% with 4,500 hidden
neurons in the three-layer SNN architecture.
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Figure 6: Test performance with different iteration times
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Figure 7: Test performance on different architectures

Comparative Studies with Other Models

Here we compare our model with other SNN models on the
MNIST classification task, as shown in Table 1. Some of
them use preprocessing strategies such as threshold judg-
ment, training set enhancement, pre-edge detection, orienta-
tion detection, etc. For learning types, they are supervised
or unsupervised. For neuron models, they are rate-based or
spike-based. For learning methodologies, they are biologi-
cally inspired (e.g. morphology learning or STDP) or not
(e.g. back propagation). From the table, we observe that
the best performance of rate-based model with back prop-
agation is 99.1%. However this method is actually convert-
ed from a traditional artificial neural network (not naturally
spike based) with back propagation. Except for our model,
the best performance of pure spike-based model with bio-
logical plausible learning rules (e.g. STDP) is 95%.

Our model is with both biological structures (LIF spik-
ing neuron model, feed-forward architecture) and biological
plausible learning rules (four step learning rules with STD-
P). Our method could reach the accuracy of 98.52% which
outperforms 95%. To the best of our knowledge, this should
be a new record on spike-based SNN with biological learn-
ing rules for MNIST task.

Analyzing the Functional Black Box of SNN
Deep analysis of connection weights of SNNs is a challeng-
ing task. However, some dimension-reduction method (e.g.
SNE (Hinton and Roweis 2003), t-SNE (Maaten and Hin-
ton 2008), LargeVis (Tang et al. 2016)) could decrease the
dimension of the weight into two or three dimensions, by
which human could far more easier to get better understand-
ing. Here we use t-SNE to further analyze what happened in
the procedure of SNN training, and could also answer that
why the proposed model works on this kind of problem.
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Figure 8: Visualization of input (left) and hidden (right) lay-
ers in SNN with t-SNE

The original dimension of MNIST dataset is 784 (which
is the square of image width 28), and the number of im-
ages is 60,000 for training. In order to understand the dis-
tribution and relationships of these images, we directly use
t-SNE to decrease the 784 dimensional data into the two di-
mensional data. As shown in the left of Fig 8, each point in
figure stands for one 784 dimensional image sample, and d-
ifferent colors stand for different sample classes. The t-SNE
will maintain the relationship of original datasets as much as
possible. For example, any two points which are closer than
other points in the 784-dimensional space would be simi-
lar in 2-dimensional space. Most but not all of the points in
the left of Fig 8 could cluster into the correct classes. How-
ever, after the learning in SNN, the information in the sec-
ond layer (with 400 hidden neurons) could have clearer and
better clustering performance on t-SNE than the first layer,
as shown in the right of Fig 8. This means the learning of
synaptic weights in SNN is helping the network to perform
better clustering and classification performances.
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Figure 9: Unsupervised equilibrium state learning on hidden
layers with 6 (left) and 20 (right) iteration times

In addition, Algorithm 1 shows the integration of unsuper-
vised and supervised learning in SNN. However, the func-
tion of unsupervised procedure (especially the equilibrium



Table 1: Classification accuracy of SNNs on MNIST test set.

Architecture Preprocessing (Un-)Supervised Training Type Learning Rule Performance
Dendritic neurons (Hussain, Liu, and Basu 2014) Yes Supervised Rate-based Morphology learning 90.3%

Spiking RBM (O’Connor et al. 2013) Yes Supervised Rate-based Contrastive divergence 94.1%
Convolutional SNN (Zhao et al. 2015) Yes Supervised Spike-based Temporal rule 91.3%

Spiking RBM (Merolla et al. 2011) None Supervised Rate-based Contrastive divergence 89.0%
Convolutional SNN (Diehl et al. 2015) None Supervised Rate-based Backpropagation 99.1%
Two-layer SNN (Diehl and Cook 2015) None Unsupervised Spike-based Exponential STDP 95%
Two-layer SNN (Querlioz et al. 2013) None Unsupervised Spike-based Rectangular STDP 93.5%

Voltage-driven Plasticity-centric SNN (Our work) None Both Spike-based Equilibrium learning + STDP 98.52%
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Figure 10: Unsupervised equilibrium state learning on out-
put layers with 6 (left) and 20 (right) iteration times

state learning) and its role in network training is not very
clear. How this procedure affect the classification task needs
to be further explored.

Here we also use t-SNE to analyze the different propor-
tions of unsupervised learning in SNN learning. We selec-
t different iteration times of unsupervised equilibrium state
learning from 1 to 100, and in each iteration time we vi-
sualize the t-SNE images. As shown in Fig 9, with different
repeated times of unsupervised learning, the SNN shows dif-
ferent degrees of clustering by t-SNE visualization method.
In the left of Fig 9 the repeated time is 6 and the t-SNE result
does not appear to be with clearly clustered phenomenon,
however, with the increase of the repeated times of unsu-
pervised learning, the cluster in the right of Fig 9 is clearer
which shows the contribution of unsupervised learning will
increase as the repeated time grows. Similar results could al-
so be found in the output layers of SNN, as shown in Fig 10.
This visualization result will help us better understand the
functional role of the proposed model applied in SNN.

Conclusion
Although spiking neural networks are more biologically re-
alistic to explore the nature of intelligence compared to oth-
er types of artificial neural networks. Understanding of their
learning and training principles are still limited. In order to
provide a more comprehensive framework, many differen-
t kinds of learning rules have been proposed (Zeng, Zhang,
and Xu 2017; Zenke, Agnes, and Gerstner 2015), such as the
different kinds of STDPs, long-term potentiation or depres-
sion, short-term facilitation or depression, hetero-synaptic
plasticity, etc. Nevertheless, from a practical point of view,
there is still a gap on network performance compared to deep
neural networks.

This paper proposed the Voltage-driven Plasticity-centric
SNN (VPSNN), which is a four-step learning model to cre-
ate a new general learning architecture on the training of
SNNs. It integrates supervised and unsupervised learning
to train an SNN with non-differential neurons. The method
overcomes the curse of direct relationship analysis between
synaptic weights and output performance (e.g. energy func-
tion or cost function), which usually need smooth func-
tions of neurons and networks. The architecture contains
these main parts: Firstly, our method focuses on the dynam-
ical change of membrane potential affected by feed-forward
signals in LIF. Secondly, the model keeps the balance be-
tween the input and output of neurons and networks by tun-
ing membrane potentials. Thirdly, in the supervised learn-
ing phase, the membrane potentials of the last two layers
are dynamically changed. Finally, biological inspired STDP
learning rule is applied on the SNN to change the synaptic
weights.

In this architecture, LIF neuron model, bi-phasic STDP
rule, the integration of supervised and unsupervised learn-
ing methodologies are synthesized together. This new learn-
ing methodology does not care about the characteristics of
neurons which are non-differential or not, and also separates
the unsupervised and supervised procedures. It is with po-
tential on tuning other types of biologically inspired neural
networks.

The good performance of the experimental result of the
proposed model on MNIST makes a step forward to min-
imize the gap on accuracy between SNNs and DNNs. It
shows the potential and efficiency of the architecture. In the
future, with more biology inspired learning principles added
into the network in a synthesized way, the potential and ad-
vantages of SNNs can be further extended and may be bigger
than other types of artificial neural networks.
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