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As brain-related research presents increasing importance, the requirement for automatic spike detection algorithms also 
emerges. Traditional spike detection algorithms, including amplitude thresholding and wavelet transformation, show several 
shortcomings that impede the practical application. Here, we propose an artificial neural network-assisted amplitude 
thresholding algorithm and conduct experiments with raw signals collected from the primary somatosensory cortex and 
primary motor cortex of macaques. Using F1 score as an evaluation index, artificial neural networks, as well as its 
lightweight version, effectively help the amplitude thresholding to achieve better performance, showing enormous potential 
for real-time spike detection application. 

CCS CONCEPTS • Computing methodologies~Machine learning~Learning paradigms~Supervised 
learning~Supervised learning by classification • Applied computing~Life and medical sciences~Bioinformatics 

Additional Keywords and Phrases: Spike detection, Amplitude thresholding, Artificial neural network 



2 

1 INTRODUCTION 

Nowadays, research related to the brain is presenting increasing importance and driving the requirements for 
specific inspection equipment, which records the activity trace of neurons that contribute to brain functions. 
Spike detection[1, 2], as a previous step of spiking sorting, shows great importance to extracellular single-unit 
recording in brain-computer interface (BCI)[3], diagnoses of nervous system diseases[4], and research on 
brain functions. By picking up the timing of action potentials in continuous input signals, raw waveform data 
will be transformed into spike trains representing the activity patterns of recorded neurons. Due to the large 
volume of raw signals with multiple channels and high sampling rates, applying automatic algorithms to 
replace manual data processing is essential for the practical application of spike detection. 

However, there are still difficulties remaining for automatic spike detection algorithms[2]. On the one hand, 
filtrating spike signals from raw extracellular neural data is challenging, as raw data are vastly influenced by 
different neuron types, as well as the positional relationship among target neurons, sampling electrodes, and 
other nontarget neurons, leading to the diversity of waveform in spike signals. Additionally, the noise signals 
generated from irrelevant neural activities, sampling electrode itself, and interference among other adjacent 
electrodes may possess similar features to spike signals, including waveform, amplitude, and width, thus even 
confusing seasoned neuroscientists. On the other hand, computational resources in the practical application 
may be limited in many aspects such as the size and power consumption of the hardware[5]. Considering an 
invasive BCI scenario where the spike detectors need to be miniaturized and the influence of the heat loss on 
brain physiological activities should be minimized, the dilemma between performance and lightweight brings 
more problems to the design of spike detection algorithms. 

Despite all the difficulties, related researchers have proposed several spike detection algorithms. 
Amplitude thresholding for one or both edges is often used in the real-time detection of BCI systems for its low 
computational costs[6, 7]. However, this method depends on unreliable priori assumptions of noise amplitude 
and can hardly handle the situation when the noise level is close to or surpasses the amplitude peak of action 
potentials. Template matching achieves better performance than simple thresholding[8], but shows more 
dependence on a priori knowledge about the signal shapes and detection algorithm for template generating[9], 
leading to similar issues as those in simple thresholding and additional algorithm complexity. Nonlinear 
energy operator (NEO) is another widely used threshold-based method that amplifies the amplitude and 
frequency of local peaks and also requires manual or automatic adjustment[10, 11]. Wavelet transformation-
based algorithms (WT) are another major category for spike detection whose efficiency of spike largely 
depends on the selection of the mother wavelet[12,13]. 

In this work, we choose amplitude thresholding with self-adaption of threshold as the baseline for its 
simplicity and low energy consumption on real-time spike detection and test its performance on neural signals 
collected from the primary somatosensory cortex and primary motor cortex of macaques. Furtherly, we apply 
an artificial neural network (ANN) as a pattern recognizer to judge the detected signals once again after the 
regular spike detection module and also consider the lightweight of the neural network. Experimental results 
show that the introduction of ANNs and lightweight ANNs effectively improve the performance, compared to 
those of simple self-adaptive amplitude thresholding. 
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2 METHODS 

2.1 Data collecting 

Raw neural data we use in this work is obtained by multi-shank nanoelectronic thread (NET)[14] probes which 
are implanted into the primary somatosensory cortex and primary motor cortex of macaques. The probe tip 
depth ranges from 700 μm to 1mm. Neural signals are collected using the Intan 128-channel RHD2164 
evaluation system (Intan Technology) at a sampling rate of 30 kHz. The commonly used median reference is 
applied to the raw data to reduce modal noise. In vivo, impedance is measured at 1khz with the same system 
before each recording. Individual units are identified based on the criterion that the proportion of pulses with a 
pulse interval of less than 2 ms is less than 1% of the total discharge. We select one channel with a relatively 
high signal noise ratio and an average amplitude of 30μv from the records of 128-channel NET probes for the 
following experiments. 

Figure 1: Diagram depicts the calculating of precision and recall and overview of spike detection algorithm. 
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2.2 Evaluation index 

In this work, we assume the result of spike sorting performed by Offline Sorter (Plexon)[15] as ground truth. 
The spike signals detected by our algorithms are compared with the aforementioned ground truth to judge 
whether they belong to true positive samples or false positive samples, while those spike signals that exist in 
the ground truth but are not detected by our algorithm are defined as false negative samples. However, it is 
hard to define true negative samples in this task, as there is no spike taking place during most time of the 
sampling process and numerous true negative samples can be found, far more than the other three 
categories. Thus, the commonly used receiver operator characteristic (ROC) curve which needs to collect the 
number of true negative samples is unsuitable for this work and we choose F1 score which is the harmonic 
mean of the precision and recall to represent the performance of different methods. The detailed process of 
calculating precision, recall, and F1 score is shown in Fig. 1.a and as follows: 

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡+𝑓𝑓𝑓𝑓𝑓𝑓𝑝𝑝𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡

 (1) 

𝑅𝑅𝑟𝑟𝑟𝑟𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡+𝑓𝑓𝑓𝑓𝑓𝑓𝑝𝑝𝑡𝑡 𝑛𝑛𝑡𝑡𝑛𝑛𝑓𝑓𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡

 (2) 

𝐹𝐹1 = 2𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛∙𝑡𝑡𝑡𝑡𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓
𝑝𝑝𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛+𝑡𝑡𝑡𝑡𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓

 (3) 

2.3 Overview of spike detection algorithm 

In this work, we priorly follow a commonly used procedure of amplitude thresholding as shown in Fig. 1.b. The 
original signals are firstly preprocessed by a band-pass filter to eliminate noise and direct current offset in the 
original signal at 300-3000 Hz. Then an amplitude threshold (as shown in Fig. 1.c) is set to detect the after-
depolarization peak membrane potential from the filtered signal. 

To calculate the threshold, the NEO (as shown in Equation (4)) is firstly used to process the filtered data 
𝑋𝑋(𝑡𝑡) at time 𝑡𝑡 and amplify the energy of the mutation signal to obtain better results in spike extraction. Then 
the mean absolute value (shorted as MAV, the same hereinafter) of data is calculated in one second as the 
unit of threshold value in the next second so that the threshold could be adjusted self-adaptively to the 
continuous input data. Additionally, the aforementioned MAV calculating only considers input information in a 
short period and neglects former historical information. Thus, we apply an iterative model (Equation (5)) in 
threshold calculation to retain the historical information and make the unit of threshold value more stable. 

𝑁𝑁𝑁𝑁𝑁𝑁:𝑋𝑋(𝑡𝑡) = 𝑋𝑋(𝑡𝑡)2 − 𝑋𝑋(𝑡𝑡 + 1)(𝑡𝑡 − 1) (4) 
𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑟𝑟𝑅𝑅𝑜𝑜 𝑢𝑢𝑟𝑟𝑟𝑟𝑡𝑡(𝑡𝑡) = 𝛼𝛼 ∙ 𝑚𝑚𝑅𝑅𝑚𝑚(𝑡𝑡 − 1) + (1 − 𝛼𝛼)𝑚𝑚𝑅𝑅𝑚𝑚(𝑡𝑡) (5) 

After threshold selection followed by a normalization process, a whole spike waveform comprised of 
membrane potential at 34 neighboring sampling points is extracted according to the relative timing of the peak 
in action potential. Additionally, we introduce fully-connected ANNs (as shown in Fig. 1.d) to fulfill more 
accurate detection, which further estimates whether the normalized waveforms are real spike signals or 
above-threshold noise signals. As ANNs bring extra computational costs, especially in hardware 
implementation, we also consider several methods to lightweight the networks. ANNs and their lightweight 
methods are furtherly discussed in Section 2.4 while experiment results are shown in Section 3.2. 

2.4 Artificial neural network and lightweight methods 

ANNs are computational models[16] which are widely utilized on variant tasks, such as image 
classification[17], speech recognition[18, 19], and natural language processing[20, 21]. Inspired by biological 
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neural networks[22, 23], ANNs are constructed from artificial neurons which serve as computing nodes and 
imitate the information integration function of real biological neurons. After receiving input 𝑥𝑥 from upstream 
neurons with connection strength 𝑤𝑤 and bias 𝑏𝑏, artificial neurons convert integrated information with a non-
linear function 𝜎𝜎(∙) into output 𝑦𝑦 and deliver the output to downstream neurons, as shown in Equation (6): 

𝑦𝑦 = 𝜎𝜎(𝑤𝑤𝑥𝑥 + 𝑏𝑏) (6) 
As for network topology, we adopt a fully-connected structure where the network is divided into several 

sequential layers and neurons connect with all neurons from previous layer and next layer[24]. The first layer 
of ANNs, also called the input layer, has the same scale as the input data to be processed, which is the entire 
or part of the spike waveform obtained by traditional spike detection methods. The last layer of ANNs, also 
called the output layer, contains two neurons that represent positive and negative, respectively. If the output 
of the neuron representing positive surpasses that of the neuron representing negative, the input waveform is 
furtherly confirmed to be real spike signals. Otherwise, it is supposed that negative noise signals have been 
misjudged as positive spike signals by the former module. To ensure the classification accuracy of ANNs, a 
dataset consisting of manually selected positive and negative samples is used to adjust the connection weight 
and bias in ANNs with backpropagation algorithm. 

Although the scale of ANNs in this work is relatively small, compared to nowadays deep artificial neural 
networks (DNNs), the requirement of lightweight design is still essential for specific application scenes, e.g. 
brain-computer interface (BCI), behavioral experiments. In this work, we test three approaches for lightweight. 
The first one is decreasing the number of hidden layers and an extreme example is a network containing only 
input and output layers that directly connect with each other. The second one is truncating the head and/or tail 
of the input waveform to reduce the dimension of input layer while conserving sufficient pattern information. 
The third one is weight quantization which is commonly used before the hardware implementation of ANNs. 
When initialized and trained on a mainstream deep learning framework, the connection weights and biases 
are floating point arithmetic but low-bit integers are needed. Among several weight quantization methods, we 
choose a relatively simple procedure where floating point arithmetic weights are first normalized, then 
multiplied by the maximum, and finally, the floor of the outcomes is adopted as the quantized weights. 

3 EXPERIMENTS 

3.1 Amplitude thresholding with self-adaptive threshold 

We used multiples of the unit value (from twice to seven times) as threshold intensities. As threshold intensity 
was strengthened, the precision increased from 24.49% to 79.90% while recall decreased from 93.45% to 
33.23% (shown in Fig. 2.a, b). As a result, the highest F1 score (0.59) was achieved when the threshold 
intensity was four times the unit value with moderate precision (53.47%) and recall (65.44%) (shown in Fig. 
2.c). Two trials where the iterative model mentioned in Section 2.3 were applied (𝛼𝛼=0.99 and 𝛼𝛼 =0.9) were 
also presented in Fig. 2.d. However, the introduction of the iterative model showed no benefit but reduction in 
both recall and precision, which might be due to the instability of spike patterns along the continuous input 
data. 
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Figure 2: (a-c). Precision, recall, and F1 score of simple amplitude thresholding and ANN-assisted amplitude thresholding at 
different threshold intensities. Black dashed circles represent the highest F1 scores. d. Precision, recall, and F1 score of 

simple amplitude thresholding with no iterative models, iterative model with 𝛼𝛼 =0.99 and 𝛼𝛼 =0.9. e. Precision, recall, and F1 
score of ANN-assisted amplitude thresholding with different layers of ANN. 

3.2 Performances of ANN-assisted spike detection 

Experimental results in Section 3.1 indicated that simple amplitude thresholding could hardly balance the 
precision and recall and thus achieved a relatively lower F1 score. As mentioned in Section 2.4, we 
introduced an ANN to furtherly judge the outcomes of the regular spike detection module. This additional 
mode discriminator was supposed to cut down a large number of false positive samples while discarding a 
small proportion of true positive samples, resulting in a considerable increase in precision and a relatively 
minor reduction in recall. When the spike detection module was at a threshold possessing high recall and low 
precision, the introduction of ANN would finally rise the F1 score. As shown in Fig. 2(a-c), when the threshold 
intensity was twice the unit value, the introduction of ANN raised precision from 24.49% to 74.42%. Though 
recall fell from 93.45% to 62.12%, the F1 score increased from 0.39 to 0.68, making this threshold intensity 
the best among the six intensities we tested. On the contrary, when the threshold intensity was seven times 
the unit value where the precision was relatively high but the recall was relatively low, the introduction of ANN 
damaged performance as recall fell from 33.23% to 30.80% and F1 score fell from 0.47 to 0.45, though 
precision increased from 79.90% to 82.22%. 

Additionally, we also tested the potential performance loss of lightweight ANN which was necessary for 
practical applications in resource-limited scenarios like real-time invasive BCI. Three lightweight strategies 
were discussed. 
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Figure 3: (a-c). Heat maps of precision, recall, and F1 score in trials without weight quantization. (d-f). Heat maps of 
precision, recall, and F1 score in trials with weight quantization. The cyan stars represent the highest F1 scores among 

other trials. 

3.2.1 Different Numbers of Hidden Layers. 

As shown in Fig. 2.e, among tested ANNs-assisted algorithms with different numbers of hidden layers with 
twice the unit value as threshold intensity, ANN with one hidden layer achieved better performance (F1 score: 
0.68; precision: 74.42%; recall 62.12%). The reduction in the precision of ANN with two hidden layers 
(66.63%) might due to the overfitting problem in deeper ANNs. 

3.2.2 Input Truncation. 

As shown in Fig. 2(a-c), we applied heat maps to demonstrate the performances of the ANN-assisted 
algorithm in trails where different lengths of head and/or tails of input waveform were truncated. The 
longitudinal distribution of evaluation indices in Fig. 2(a-c) showed that the completeness of the fore part of 
the waveform presented more importance than the rear part. The conclusion was also proved by the fact that 
when two sampling points from the tail were truncated and zero sampling point from the head was truncated, 
the algorithms achieved the highest F1 score (0.69) among all contrasts. 
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3.2.3 Weight Quantization. 

To test the influence of reduction in bit number on the performance of ANN-assisted algorithm, we 
transformed connection weights and biases from 32-bit signed floating point arithmetics to 9-bit signed 
integers and 8-bit unsigned integers, respectively[25]. The decrease in top performance (from 0.69 to 0.68) 
brought by weight quantization was minor, as shown in Fig. 2(d-f). 

4 DISCUSSION 

In this work, we test spike detection algorithms on collected neural signals and verify their limitation on 
balancing precision and recall. By introducing ANN, the dilemma is preliminarily mitigated. But there is still 
plenty of room for improvement. On the one hand, ANNs are data-driven computational models, and the 
quality of training datasets vastly influences the accuracy of ANN models. However, generally accepted 
standard training datasets have not been founded in spike detection tasks, and the manually selected training 
dataset we use in this work is far from perfect, implying a further improvement in the performance of ANN-
assisted spike detection. On the other hand, as lightweight ANNs could improve the performance of an 
existing spike detection algorithm indicating the capability to extract pattern characteristics of action potentials 
from neural signals, an end-to-end ANN that takes raw signals within a time window as input and judges 
whether the input belongs to spike signals or not may have the potential to fulfill spike detection algorithm 
balancing high performance and low consumption. 
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