
Received: 22 December 2016 Accepted: 3 March 2017

A Computational Approach towards the
Microscale Mouse Brain Connectome

from the Mesoscale

Tielin ZHANG a, Yi ZENG a,b,c,1 and Bo XU a,b,c

a Institute of Automation, Chinese Academy of Sciences, Beijing, China
b Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy

of Sciences, Shanghai, China
c University of Chinese Academy of Sciences, Beijing, China

Abstract. The wiring diagram of the mouse brain presents an indispensable foun-
dation for the research on basic and applied neurobiology. It is also essential as
a structural foundation for computational simulation of the brain. Different scales
of the connectome give us different hints and clues to understand the functions of
the nervous system and how they process information. However, compared to the
macroscale and most recent mesoscale mouse brain connectome studies, there is
no complete whole brain microscale connectome available because of the scalabil-
ity and accuracy of automatic recognition techniques. Different scales of the con-
nectivity data are comprehensive descriptions of the whole brain at different levels
of details. Hence connectivity results from a neighborhood scale may help to pre-
dict each other. Here we report a computational approach to bring the mesoscale
connectome a step forward towards the microscale from the perspective of neuron,
synapse and network motifs distribution by the connectivity data at the mesoscale
and some facts from the anatomical experiments at the microscale. These attempt-
s make a step forward towards the efforts of microscale mouse brain connectome
given the fact that the detailed microscale connectome results are still far to be pro-
duced due to the limitation of current nano-scale 3-D reconstruction techniques.
The generated microscale mouse brain will play a key role on the understanding of
the behavioral and cognitive processes of the mouse brain. In this paper, the con-
version method which could get the approximate number of neurons and synaps-
es in microscale is proposed and tested in sub-regions of Hippocampal Formation
(HF), and is generalized to the whole brain. As a step forward towards understand-
ing the microscale connectome, we propose a microscale motif prediction model to
generate understanding on the microscale structure of different brain region from
network motif perspective. Correlation analysis shows that the predicted motif dis-
tribution is very relevant to the real anatomical brain data at microscale.
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1. Introduction

Identifying the structural architecture of the brain has been one of the most important and
challenging tasks for the investigation of the brain and neuroscience. The connectome of
the brain is the structural foundation and provides insights for deeper understanding of
neural networks and neural functions. It also shows the genetic and evolutionary proper-
ties on the brain organization across different species. Small world connection and mo-
tif distribution property of the neural networks have been found in brains of different
species, ranging from drosophila brain to the human brain [Achard et al (2006)]. Experi-
ments have shown that various types of motif support different special functional proper-
ties of the network, for example, three-node feed-forward loop motif plays an important
role on information abstraction [Mangan and Alon (2003)].

Despite of the fundamental and important role for neuronal connectivity to brain and
neuroscience research, the current understanding about them is far to complete. The mas-
sive whole brain connectivity can be roughly divided into multiple scales, namely, the
macroscale, the mesoscale, and the microscale. The connectivity in different scales de-
scribes different principles on the organization of brain building blocks at different level-
s. The connectome at different scales share some mutual characteristics (e.g. small world
phenomenon, similar motif distribution), although their interrelationships are complex.

The macroscale connectome of the brain describes connectivity of different brain
building blocks in a coarser level which is usually from one region to another region
of the brain. It can be inferred by functional magnetic resonance imaging (fMRI) and
diffusion tensor imaging (DTI) which could predict the functional connectivity of the
brain by detecting the changes of the blood flow and restricted diffusion of water re-
spectively [Friston et al (1998),Assaf and asternak (2008)]. The wiring diagram of the
macroscale connectome for the whole brain has been built and has been used on many
aspects of neural biological researches and applications.

The microscale connectome of the brain is aimed at describing the connectivity of
brain building blocks at the neuron and synapse level. Automatic microscopic recon-
struction at the nanometer scale (e.g. stimulated emission depletion, STED for short) is a
supporting technique for building the microscale connectome of the brain. Nevertheless,
due to the scalability issue for automatic recognition and 3-D reconstruction, there is no
microscale whole brain connectome atlas for mammals.

The mesoscale connectome is between the macroscale and the microscale. It is finer
than the scale of large brain regions and coarser than the scale of neurons and synapses.
The connectivity of the sub-regions can be described at this level. One of the most rep-
resentative results at this level is the mesoscale connectome of the mouse brain based on
the enhanced green fluorescent protein (EGFP) technique [Oh et al (2014)].

The microscale connectome is essential and unique since it shows the basic wiring
principles at the neuron level. The effort from mesoscale to microscale can be consid-
ered as a step forward towards the understanding of the behavioral and cognitive pro-
cesses in mouse brain before the real and complete data come out through synaptic-level
neuroanatomical investigations.

In this paper, we attempt to take a step forward towards the microscale atlas from
the mesoscale by computationally combining understandings and data both from the
mesoscale and the microscale. The microscale connectome efforts are made from two
perspectives: (1) the predicted number of synapses and neurons in each region; (2) the
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predicted microscale network motif distributions in target regions. The approach com-
bines the understanding of the mesoscale connectome (which is composed of positive
and negative connective strength based on the method of tracing projections between
brain regions) and the anatomical experimental results (e.g. the number of neurons and
synapses in some identified brain building blocks measured by anatomical processing)
at the microscale to predict the number of neurons and synapses in other regions. In
addition, anatomical network motif data in 54 brain regions are collected and used to
train a microscale motif prediction model which could predict the motif distribution of
a specific region at the neuronal and synaptic level. The new generated microscale con-
nectome which contains the number of neurons and synapses, and the microscale motif
distribution will be verified by the real anatomical data from future experiments.

Section 2 will introduce the current progress of imaging methods in different scales,
and a mesoscale connectome atlas produced by Allen Institute for Brain Science is se-
lected as the basis of our investigation. In Section 3, anatomical data from sub regions of
Hippocampal Formation (HF) are selected to validate the reasonability of the proposed
conversion method. In Section 4, a model for microscale motif distribution prediction
is proposed and validated. Section 5 gives a statistical degree analysis for the predicted
microscale atlas. Section 6 gives a brief conclusion for the proposed method.

2. Related Works

With the advancement of new techniques and equipments, attempts of mesoscale and
microscale neuron imaging for the mouse brain have been conducted and accelerated our
understanding on the structure and function of the neural circuits.

At the microscale, from the structure perspective, electron microscopic equipmen-
t only enables relatively small scale reconstruction and observation of the brain anato-
my [Sporns et al (2005),Osten and Margrie (2013)]. From the function perspective, at
this scale, functional calcium imaging methods are used to understand the relationship
between cognition and neuron activities, still at very small scale [Stosiek et al (2006)].
Large scale (including whole brain scale) structural and functional connectivity at the
microscale is one of the most challenging investigations for Brain and Neuroscience re-
search [Kasthuri et al (2015)].

At the mesoscale, several investigations on the mouse brain connectome has already
been made. One of them is by the Golgi silver impregnation method [Rakic (2006)],
another even more efficient method is neuroanatomical-tracer method which has played
an important role on the measurement of connectivity of sensory, motor and other sub
systems [Felleman and Essen (1991),Rocklanda and Pandyaa (1979)]. Comparing with
the traditional methods which are time consuming, a quicker way is to make the map-
ping of point-to-point connections between two brain building blocks by the method
of anterograde tracers and retrograde tracers [Bohland et al (2009)]. This method us-
es two approaches to generate three-dimensional mouse brain atlas: the first one is
the light-sheet fluorescence microscopy for the brain tissue after chemical process-
ing [Maizel et al (2011)], and the second one is the integration of microscopy tissue
sectioning (e.g. line-scan imaging, or two-photon microscopy [Ragan et al (2012)]).
The main characteristic of this method is the mechanical removal of the brain tis-
sue after the mosaic imaging of the upper tissue, so that the tissue will always be



on the top of the camera, and high resolution camera or lenses can be used to
achieve high standard imaging pictures. Instruments can be serial two-photon tomogra-
phy [Ragan et al (2012)], knife-edge scanning microscopy or fluorescent micro-optical
sectioning tomography [Maniadakis and Trahanias (2003),Seress (1988)].

The mesoscale mouse brain connectome atlas from Allen Institute for Brain Science
uses EGFP to make the measurement of the projections of axons from 213 mouse brain
sub regions (e.g. V1 and V4 in visual cortex, CA1 in hippocampus, and POL in thalamus)
covering the whole brain [Oh et al (2014)]. The atlas is calculated from 469 injected
experiments and has been one of the state of the art atlases [Ragan et al (2012)]. There
are 213×213 values in which each one stands for the strength of the connectivity among
two sub regions in the atlas.

In this paper, we will try to combine mesoscale atlas with some other anatomical
experimental results to make a predictive analysis on the neuron, synapse and motif
distributions to bring a step forward towards the microscale mouse brain atlas.

3. From Mesoscale to Microscale Connectome

The microscale connectome atlas is able to identify the number of neurons and synaps-
es in each sub region and the level of convergence and divergence for each cell in the
network. Even though the detailed microscale atlas has not been acquired by the micro-
scopic reconstruction method, with the high-resolution mesoscale mouse brain atlas and
some sufficient and detailed microscale connections of sub-regions (e.g. the approximate
number of neurons and synapses for some specific sub regions by anatomical experi-
ments), we can bring the mesoscale connectome a step forward towards the microscale
connectome. However, since different sub regions share different cell types and cell den-
sities, our attempt is just a prototype to show the reasonability and importance of con-
version method, and with the more real and more detailed anatomical results are found
by experiments, a more feasible microscale atlas with higher accuracy will be produced
based on the proposed convertion method.

The essential idea that bridges the mesoscale connectome and the microscale con-
nectome is that the EGFP method can obtain projection weights, while they are naturally
weights of connections among clusters of neurons that belong to different regions (or the
same region for interconnections). Hence, the projection weights at the mesoscale can be
converted to the number of synapses at the microscale with the help of more and more
anatomical experimental results. In addition, by using different kinds of EGFP methods,
different types of connectivity (i.e. excitatory or inhibitory synapses) at mesoscale can
be obtained.

In order to make comparison with the prediction results, some special sub regions
which already contain partial detailed microscale information by anatomical experiments
are selected. Compared to other regions, most of the complex intrinsic wiring diagram
of the hippocampus is increasingly refined over more than a hundred years. Hence, we
select HF for verification. Here we separate the conversion procedure into four major
steps.
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3.1. Regrouping the Mesoscale Connections

As the first step, we regroup the mesoscale connections of building blocks which belong
to the same upper region in the mouse brain. The data of mesoscale connections in 213
regions of mouse brain are collected. Here we give three examples, as shown in Fig 1,
the hippocampus, the visual cortex and the thalamus. (1) illustrates the Sub regions of
hippocampal formation and their connectivities, and the right image illustrates the con-
nectivity strength of different sub regions, from top to bottom is CA1, CA2, CA3, DG,
LEC, MEC, Sub, respectively; (2) illustrates some part of the sub regions of the visual
cortex and their connectivities, for the image on the right, the connectivity strength is
among VISal, VISam, VISI, VISp, VISpl, VISpm, from top to bottom respectively. (3)
illustrates sub regions of the thalamus and their connectivity, and in the right image, from
top to bottom, the sub regions are: AD, Amd, Amv, AV, CL, CM, IMD, LD, LGd, LGv,
LH, MGd, MGm, MGv, MH, PT, PVT, RH, SMT, SPA, SPFm, SPFp, VAL, VPL, VPM,
VPMpc, respectively.
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Figure 1. The location and connectivity matrix of sub regions within hippocampal formation (1), part of the
visual cortex (2), and thalamus (3) in the mouse brain.

3.2. Providing Partial Microscale Anatomical Information

Following the first step , we collect three main parts of anatomical experimental result-
s, including hippocampal formation, visual cortex, and some parts of thalamus. As hip-
pocampus formation for example, it is with a six layered architecture that comprises five



distinct sub-regions: the Cornu Ammonis area one to three (CA1-CA3), the Subiculum
(Sub) and the Dentate Gyrus (DG). A sketch on the mesoscale connection among dif-
ferent sub regions of HF and EC are shown in Fig 2 (which is integrated and refined
from [Cutsuridis et al (2010),Treves and Rolls (1992)].). The EC contains two parts (i.e.
MEC and LEC) and six layers (i.e. EC-I to EC-VI). Perforant pathway (PP) and trisy-
naptic pathway are the two main projections from EC to HF. The output regions from HF
to EC are CA1 and Sub [Treves and Rolls (1992)].
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Figure 2. The mesoscale connectivity diagram of the EC-HF network. This image is integrated and refined
from [Cutsuridis et al (2010),Treves and Rolls (1992)].
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Figure 3. The CA3 synapse connectivity in HF (integrated and refined from [Cutsuridis et al (2010),
Treves and Rolls (1992),Witter (2010)]).

To illustrate the idea, here we select one of the sub regions (e.g. CA3) as the addition-
al anatomical information. As shown in Fig 3, the brackets in the form of [A, B] denote
the average synaptic connections between neurons in two regions. A denotes the number
of CA3 synapses innervated by a single cell in EC or CA3. And B denotes the number
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of cells that converge on a single CA3 cell. In Fig 3, CA3 receives inputs from EC by
perforant pathway and from DG by mossy fibers, and produces outputs to CA1 by Schaf-
fer Collateral pathway. In addition, it also has strong recurrent network which is very
different from other sub-regions in HF. The average number of synapses for each cell
which converges on CA3 is 3,750 for EC and 5,500 for CA3 [Cutsuridis et al (2010)].
The average synapse number of a single cell (in EC, DG or CA3, here we do not dis-
tinguish the types of cells) which projects to CA3 cells is 4,600 and 6,000 respective-
ly [Treves and Rolls (1992),Witter (2010)].

3.3. Converting from the Mesoscale Connectome to the Microscale Connectome

Up to now, there is no detailed atlas about the numbers of neurons and synapses in each
sub regions of the whole mouse brain. The basic idea of this step is to provide a concrete
method to predict them. In order to make the method more understandable, we introduce
it combining with a concrete example.

Table 1 presents the detailed description of the mesoscale connectivity strength
in HF and EC. The values in the table are the voxel strength measured by EGFP in
paper [Oh et al (2014)]. CA3 is one of the sub regions with enough anatomical details
about the number of neurons and recurrent-type synapses. So we select it as the sample
region in Equation 1. Based on the average number of synapses in sample sub regions,
we can calculate the approximate total number of synapses for each region based on the
Equation 1.

Synsub (i) =
∑

213
j=1 Wi, j

∑
213
j=1 ∑

N
s=1 Ws, j

×

(
N

∑
s=1

Syns×Neus

)
(1)

where Synsub (i) denotes the total number of synapses of the target region i, Wi, j
denotes the connectivity weight from the region i to region j in mesoscale mouse brain
atlas (e.g. some weights of sub regions in HF are shown in Table 1, more weights of
other regions can be found in [Oh et al (2014)]); Ws, j is the value of connectivity weight
from sample sub regions to other regions (e.g. WCA3,CA3 is the recurrent value and is
0.116, as shown in Table 1); Neus is the number of neurons in sample areas (hippocampal
formation, visual cortex or thalamus) which is from the anatomical experiments; Syns is
the average number of synapses of cells in the sample areas (e.g. for CA3 the value is
6,000, as shown in Fig 3 [Treves and Rolls (1992),Witter (2010)].

Based on the proposed method and the mesoscale connectome atlas in Table 1, we
then can obtain the approximate synapse distribution of the whole mouse brain. Notice
that this distribution is still the mesoscale distribution of the synapses for each sub re-
gions.

In order to predict the microscale number of neurons and the number of synapses
for each neuron in each sub region of mouse brain, two attempts are tried to make the
measurement on the number of neurons, as defined in Equation 2 and Equation 3.

N1 (i) =
Synsub (i)

∑
213
i=1 Synsub(i)

×NeuAll (2)

N2 (i) =
voxel (i)

∑
213
i=1 voxel (i)

×NeuAll (3)



Table 1. The connectivity weights of EGFP-labeled axons between the sub regions of HF and EC (The values
are extracted from [Oh et al (2014)]).

CA1 CA2 CA3 DG LEC MEC Sub
CA1 0 0 0 0 0.0132 0.0072 0.039
CA2 0.846 0.030 0.237 0.092 0 0 0.100
CA3 0.233 0.013 0.116 0.024 0.001 0.004 0.077
DG 0.047 0.008 0.051 0.172 0.001 0.004 0
LEC 0.086 0.003 0.013 0.058 0.169 0.033 0.080
MEC 0.073 0.001 0.031 0.059 0 0.013 0.022
Sub 0.221 0.012 0.028 0 0.116 0.027 0.228

Equation 2 corresponds to the first method, and it is based on the idea that the number
of synapses in each sub region is the sum of the synapse of all kinds of neurons. Synsub (i)
denotes the approximate total number of synapses in the sub regions of mouse brain.
NeuAll denotes the total number of neurons. Equation 3 presents the second method, and
it obtains the number of neurons by the proportion voxel size of the target sub regions.
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(a) Results based on the synapse method, as defined
in Equation 2
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(b) Results based on the voxel method, as defined in
Equation 3

Figure 4. The distribution of percentage of neurons in 213 mouse brain regions by the two methods.

Fig 4(a) and Fig 4(b) present the percentages of numbers of neurons in 213 sub
regions of the mouse brain by two different methods. The cosine similarity of them is
0.828 which shows the high consistency of the two methods. By using this approach, we
obtain the percentages on the number of neurons in each sub region at whole brain scale.

3.4. Verifying the Conversion Results

Comparing the predicted data with the realistic data from anatomical experiments is a
reasonable attempt to verify the conversion results.

3.4.1. The verification from the sub regions in HF

For the anatomical results, as Table 2 shows, some quantitative data about the number
of neurons, the ratio of excitatory and inhibitory synapses at microscale in HF has been
measured [Insausti et al (1998)].
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Table 2. The approximate number of neurons in HF [Maniadakis and Trahanias (2003),
Cutsuridis et al (2010),Boss et al (1985)]

Region Names Number of Neurons Excitatory Synapses Inhibitory Synapses
CA1 390,000 95% 5%
CA3 250,000 88% 12%
DG 500,000 66% 34%

For the prediction results, the number of neurons and the number of synapses in
sub regions of HF and EC based on the two methods are shown in Table 3 and Table 4.
Comparing with the anatomical experimental results from Table 2, the predicted number
of neurons in each sub region of HF by two different methods are generally consistent to
the anatomical ones.

Table 3. The predicted number of synapses in hippocampus by method one

Region Number of Neurons (103)
Number of Synapses (103)
CA1 CA3 DG

CA1 378.3 2.8 0.0 0.0
CA3 330.0 12.0 6.0 1.2
DG 495.4 2.4 2.6 8.9

Table 4. The predicted number of synapses in hippocampus by method two

Region Number of Neurons (103)
Number of Synapses (103)
CA1 CA3 DG

CA1 355.5 2.8 0.0 0.0
CA3 280.2 10.1 5.1 1.0
DG 585.2 6.8 7.4 25.5

Note that due to the technical limitation of EGFP, many of the connectivity strength
within or among sub regions are not visible (i.e. with the value 0). Hence, the average
number of synapses for each neuron in specific region cannot be calculated based on
the proposed method. While some of the blank results can be refined based on domain
knowledge. For example, in the mammalian brain, almost all the regions are with inter-
connections among neurons within the specific region. Hence, for those values marked
as 0 for self connections, the average number of synapses for this region (e.g. CA1 in
Table 3 and Table 4) is assigned an average value of synapses calculated based on the
data of whole mouse brain (namely, 2,800).

Using the same methods, we generate the number of average synapse for neurons
in all the 213 regions of the mouse brain. The over all predicted synapse number for the
whole mouse brain is approximately at the same order of magnitude compared to the real
house mouse brain. The predicted number of synapses in different regions have validat-
ed the reasonability of the proposed computational approach to convert the mesoscale
connectivity weights to the microscale synapse distribution.



3.4.2. The Verification from Other Sample Regions

Since the number of neurons in each sub regions of the mouse brain has not yet been
measured by the anatomical experiments, in order to verify the predicted results of the
neurons and the synapses, we select the predicted number of neurons and synapses in the
sample regions to make comparison with biological experimental evidence. The similar-
ity is calculated based on Equation 4.

Sim(i) =
|Pre(i)−Ana(i)|

Ana(i)
(4)

The similarity comparisons of predicted and anatomical numbers of neurons are
shown in Fig 5(a) and Fig 5(b). From the similarity results, we can conclude that most of
the results are above 50%, this shows that the two results are weakly consistent with each
other. Because this attempt just uses the anatomical numbers of neurons in three sam-
ple regions, we think that with more anatomical information added into the conversion
methods, a higher accuracy will be achieved.
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Figure 5. The similarity comparison of predicted and anatomical number of neurons

4. Region Specific Microscale Motif Distribution Prediction

Most of the networks which could be represented as graphs can use network motif to
describe their network properties [Sporns and Kotter (2004)]. Three-node network mo-
tifs are commonly used for analyzing complex networks [Mangan and Alon (2003)]. Al-
though until now, there are no detailed microscale network structures for each sub re-
gions, investigations on the motif distribution at the synaptic level could also help to get
deeper understanding on the network structures of the brain at the microscale.

Since the motif distribution at different scales share similarities to a certain degree, in
this paper, we try to establish the link between the mesoscale connectome and microscale
motif distribution.

A three layered neural network is built to make the motif type prediction at the mi-
croscale, as shown in Fig 6. The input layer contains 213 neurons (corresponding to the
213 mouse brain regions at the mesoscale) and each cell receives the inputs from one of
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the 213 connectivity strengths with the specific predicted region. The hidden layer con-
tains 500 neurons and the output layer contains 13 neurons which correspond to the 13
types of three-node motifs. The output of the network is the motif distribution prediction
results to a specific region.
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Figure 6. The 13 types of motifs (a) and the three layered classifier for motif type distribution analysis (b)

The network are trained by the data from two sources: (1) The mesoscale con-
nectivity strength of CA1, CA3 to the 213 regions of the mouse brain as inputs and
microscale motifs distributions in mouse by the network structure prediction method
as outputs [Zhang et al (2015)]; (2) The mesoscale connectivity strength of 46 regions
from both cats cortex and macaque cortex to the 213 corresponding regions as input-
s [Sporns et al (2007)] and network motif distribution of cats cortex and macaque cor-
tex as outputs (We use data from the same region of other mammalian brains since they
generally share many structural similarities) [Sporns et al (2007)]. On one hand, there
are no ground truth for microscale connectome and motif distribution for cat and mon-
key brain. On the other hand, the mesoscale motif distribution provides partial evidence
for microscale since mesoscale connections are also established by specific connections
among neurons from different regions, and the motifs from mesoscale and microscale
are similar to some extent, as shown in Fig 7. Hence, it is rational to borrow them as a
version of partial microscale connectome, and to use them as outputs of the network for
training the model.

We use the Matlab deep learning toolbox to develop the three layered classifier with
the setting of iteration time 100, learning rate 1.0. Different with the traditional training
procedure which set the target class as 1 and other classes as 0, we give the motif dis-
tribution values directly into the output layers as the right classification results. Fig 8 is
the description of the percentage distribution of different types of motifs in CA1. From
the result of Fig 8, we could find that the motifs are clustered more on type No.3, No.7,



Mesoscale Motif

(among brain regions)

Hypothesized Microscale Connections

Supporting the Mesoscale Motif

Corresponding Microscale Motif

(among neurons)

(The same as mesoscale motif)

(The same as mesoscale motif)

Figure 7. From mesoscale to microscale motifs

No.8, No.12 and No.13 which can be considered as representative motifs for describing
the characteristics of CA1. Fig 9 presents the anatomical motif distribution results of the
46 regions in cats and macaque cortex for training the three layered classifier.
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Figure 8. The 20 groups of motif distribution in CA1 of the mouse brain

As Fig 6 shows, after we obtained the anatomical results and predicted results, we
use Pearson correlation to judge the similarity of these two results. The results are mi-



Journal of Integrative Neuroscience

Macaque cortex

Cat cortex

Figure 9. The motif distributions of different regions in cortexes of cat and macaque (x and y coordinates
present the 46 sub regions and corresponding frequency of the 13 types of motifs respectively), extracted
from [Sporns et al (2007)].

croscale motif distribution of 48 regions (CA1, CA3 in the mouse brain, and another 46
brain regions in cat and macaque brain) distributed in 112 groups of data (i.e. 20 groups
for CA1 and CA3 respectively in mouse brain, 92 groups from cats and macaque cortex).
If we consider the mesoscale motif distribution from cat and macaque brain as a possible
version of the microscale, after data cross validation (90% for training and 10% for pre-
diction, with 10 times), the accuracy is 91.6%, which indicates that the proposed method
works well for the prediction of the motif distribution.

With the high accuracy of the prediction model, we apply it to the whole mouse
brain, and generated a prediction of the motif distribution for each of the 213 regions. As
shown in Fig 10, we could get predicted different motif distributions (y axis) in the whole
mouse brain regions (x axis). This result will give us tips on the analysis and construction
of structural and functional whole mouse brain model.

Figure 10. The predicted microscale motif distribution of the 213 regions in the mouse brain.

Here we introduce by far the largest microscale cortical neuron connectome on the
mouse brain (to the best of our knowledge) from [Lee et al (2016)] to validate the pre-
diction on the mouse brain. Due to the scalability issue for synaptic level reconstruction,



the largest microscale mouse brain cortical neuron connectome reported in literature by
far (to the best of our knowledge) is a connectome containing 201 neurons and 1,278
synapses from V1 of the mouse brain [Lee et al (2016)]. Although the connectome of
the 201 neurons are interconnections within these neurons, it still partially reflects the
structural properties of the most realistic microscale connections. In the motif distribu-
tion analysis, [Lee et al (2016)] reported that there are only 4 types of three-node motifs
(out of 13 types over all) which has been observed in the connectome (which is rational
since the connectome is only on how the 201 neurons are interconnected), namely, motif
No.1, No.2, No.4, and No.5 in Fig 6. The order and frequency of the motif distribution
is No.4(1918) >No.2(430) >No.1(347) >No.5(32). While the predicted motif distribu-
tion order and ratio on V1 from the proposed model follows the sequence of No.4(0.17)
>No.2(0.072) >No.1(0.04) >No.5(0.01). It indicates from the order perspective, that
the predicted results are consistent with the real anatomical data. This provides an initial
validation on the precision of the microscale motif prediction model. Here we want to
extend the discussion why the predicted values are consistent with the real data from the
order perspective, while still with inconsistency from the motif frequency ratio perspec-
tive. The main reason can be that the real anatomical data are interconnected motifs with-
in the 201 neurons from a specific part of V1 (which is somewhat partial and local, due
to current technology bottleneck), while our predicted results describe the motif distribu-
tion of the whole V1 area. If more comprehensive microscale connectome are available
in the future, the predicted results and the real anatomic data can be compared in more
details.

Although the proposed microscale whole brain predictive motif distribution model
is still in preliminary phase, it gives us a perspective and sketch on the analysis and
construction of structural and functional whole mouse brain model at the synaptic level.

5. Distribution Analysis for the Predicted Microscale Connectome

Since the microscale connectome focuses on synaptic connections within and among
different brain regions. It is natural and essential to investigate on the distribution of
synaptic connections since it reveal the structural characteristics of the mouse brain at
the microscale. Based on the generated microscale connectome, the distribution analysis
results of synapses in both long-range and short-range projections (synaptic connections
within the same region) are shown in Fig 11 to Fig 14.

Figure 11. In-degree distribution of long-range projections among different brain regions.

Fig 11(left) is an analysis on the in-degree synaptic distribution of long-range projec-
tions for the mouse brain (including 213 regions). The in-degree describes the number of
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Figure 12. Out-degree distribution of long-range projections among different brain regions.

Figure 13. Degree distribution of long-range projections among different brain regions.

Figure 14. Synaptic degree distribution of projections within the same brain region.

synapses in all the other brain regions which converges on the same mouse brain region.
The connections within sub regions are also calculated by the motif distribution and the
number of neurons, as shown in Fig 14. Notice that only some regions are with relatively
very large number of in-degree synaptic connections, and for most of the regions, the
numbers of in-degree synaptic connections are relatively low. As shown in Fig 11(right),
the log-log plot shows that the synaptic in-degree distribution of long range projections
follows the power-law distribution.

Similar with the in-degree distribution, as shown in Fig 12(left), the synaptic out-
degrees (projections which diverge from the same brain region) for different brain regions
are to some extent bigger than the corresponding in-degree. Nevertheless the distribution
also follows the power-law distribution (as shown in Fig 12(right)). In addition, if we
combine the in-degree and out-degree together, the result shows the overall synaptic
degree distribution characteristics among different brain regions, as shown in Fig 13.



6. Conclusion

In this paper, a computational approach for constructing an initial microscale mouse
brain connectome from the neuron, synapse and neuron motif distribution perspective
is proposed. The mesoscale connectome data and some microscale anatomical data are
combined together to produce a step forward towards a microscale connectome through
predictions on the distributions of neurons, synapses, and microscale neuron motifs. De-
gree distribution analysis is conducted from various perspectives to explore the charac-
teristics of the connectome at the microscale. The proposed approach should also have a
potential to be used for producing microscale connectome for other mammalian brain.

The structural connectome of the brain is a basis for the functional connectome.
Structural connectome is definitely not the only reason which decides the function of the
brain. Nevertheless, it provides the physical structural basis for information transmis-
sion among different building blocks at multiple scales. Hence, it is essential as struc-
tural support for cognitive function. We believe the relationship between structural con-
nectome and functional connectome will become much clear as long as both of these
connectomes become more complete. This is the reason why this paper aims to bridge
the gap between mesoscale and microscale structural connectome of the mouse brain, to
support future research on the comparative study on structural and function connectome
at multiple scales.

In the future, we would plan to combine other upcoming concrete experimental da-
ta to support refined version of this study and make the microscale connectome more
realistic, feasible and useful in various disciplines and application domains (e.g. brain
simulation and brain-inspired intelligence models [Liu et al (2016)]).
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