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Abstract This paper introduces seven brain-inspired rules that are deeply rooted in the understanding of

the brain to improve multi-layer spiking neural networks (SNNs). The dynamics of neurons, synapses, and

plasticity models are considered to be major characteristics of information processing in brain neural networks.

Hence, incorporating these models and rules to traditional SNNs is expected to improve their efficiency. The

proposed SNN model can mainly be divided into three parts: the spike generation layer, the hidden layers, and

the output layer. In the spike generation layer, non-temporary signals such as static images are converted into

spikes by both local and global feature-converting methods. In the hidden layers, the rules of dynamic neurons,

synapses, the proportion of different kinds of neurons, and various spike timing dependent plasticity (STDP)

models are incorporated. In the output layer, the function of classification for excitatory neurons and winner

take all (WTA) for inhibitory neurons are realized. MNIST dataset is used to validate the classification accuracy

of the proposed neural network model. Experimental results show that higher accuracy will be achieved when

more brain-inspired rules (with careful selection) are integrated into the learning procedure.
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1 Introduction

Recent advancements of brain-inspired neural networks, such as deep neural networks (DNNs), have been

successful in many domains, including visual information processing, speech recognition, etc. [1,2]. These

advancements encourage efforts that borrow more brain-inspired mechanisms and rules to improve and

extend the ability of neural networks.

Spiking neural network (SNN) is considered as the third generation of neural network models [3], which

is biologically more consistent with the brain neural network, and has shown its uniqueness in temporal

plasticity, etc. compared to other state-of-the-art models of artificial neural networks (such as DNNs).

It has already been widely used and successful in various cognitive tasks, such as image classification,

working memory, reasoning, robot navigation and motion learning, etc. [4–8].
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Several computational models have been proposed to refine SNNs, which attempt to combine biological

plausible rules to improve the performance, such as higher accuracy and shorter training time. Some

achievements have been made on the models of spiking neurons, learning strategies for synaptic weights,

rank order coding and STDP learning rules for online or off-line spatial-temporal pattern recognition.

From the performance of accuracy perspective, Wade et al. [9] proposed a synaptic weight association

and training algorithm which combined the Bienenstock Cooper Munro (BCM) learning rule with STDP.

Both excitatory and inhibitory facilitating synapses which showed frequency routing capability were

used to route the learning of hidden layer neurons. The work shows that the combination of different

kinds of neurons can improve the network performance for classification. Beyeler et al. [10] used the

Izhikevichs neuron model [11] and conductance based synaptic-dynamic rules, instead of single LIF model

and traditional STDP rules, to form a hierarchical large scale SNN model to classify the hand written

digits.

From the performance of convergence time perspective, Iakymchuk et al. [12] proposed an efficient

model which integrated LIF, STDP, spike frequency coding, and receptive field coding into an SNN

architecture. Their major concern is on efficiency and think that different neuron models with high

computational complexity and memory requirement would limit their realization in real-time learning

applications. The new model is with up to 20 times computing speed-up compared to other traditional

SNNs. Spiking neural P systems (SN P systems) integrate biological rules and are successful on time-

coding related tasks [13, 14]. Compared to SNN, although most of the variables in the system are well

predefined and not based on self-organization mechanisms or dynamically tuned during task processing,

the systems still give us many inspirations for better learning networks by incorporating more biological

rules.

In this paper, we will introduce seven brain-inspired rules and add them into the SNN training pro-

cedure. These rules include the dynamics of neurons and the synapses, various kinds of STDPs, specific

functions of the excitatory and inhibitory neurons, and the background noises. Experimental results in-

dicate that higher accuracy can be achieved when more brain-inspired rules (that are carefully selected)

introduced in this paper are incorporated into the multi-layer SNN model.

In Section 2, a multi-layer SNN architecture will be introduced which contains both excitatory and

inhibitory neurons. Section 3 will introduce the models of neurons and synapses. Section 4 will make

a detailed description on the seven learning rules for SNN training. In Section 5, a golden standard

experiment will be conducted to test the accuracy and efficiency of our proposed architecture. Section 6

will conclude the paper by highlighting major contributions.

2 A multi-layer SNN architecture

Here we define a multi-layer SNN, which is shown in Figure 1. It is a feed forward network and all the

variables are dynamic. The numbers of neurons in each layer and the synaptic weights between layers will

increase or decrease based on the seven rules described in Section 4. The abilities of the proposed multi-

layer SNN should contain static multi-dimensional classification (e.g. image classification), temporal

prediction (i.e. regression analysis), or the combination of these two. In this paper, we focus on the

classification task. The architecture contains three parts: the spikes generation layer, the hidden layers,

and output layer. In the hidden layers and output layer, the proper percentage of inhibitory neurons are

assigned for realizing sparsity and winner take all (WTA) mechanism respectively.

2.1 The spike generation layer

In spike generation layer, when the inputs are 2D static image data (with width and height coordinates)

without temporary information, two methods are proposed (as shown in Figures 2 and 3) to convert these

data into spike signals (with the number of neurons and spike timing coordinates).

The global feature converting method contains two steps: (1) Convert the 2-D gray images into 1-D

spike information (with only spatial information left) based on the comparison between gray values and
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Figure 1 (Color online) The architecture of multi-layer SNN.
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Figure 2 (Color online) The global feature converting

method.

Figure 3 (Color online) The local feature converting

method.

the static or dynamic threshold. (2) The 1-D spike information are repeated (here is 200 times) and

mixed with Poisson noises to form new 2-D signals in which temporary information is added into the

spatial information.

The local feature converting method is similar with the convolutional procedure where the convolutional

computation is made by receptive field kernels in an image. The kernels are sensitive to different kinds

of features (e.g. point, corner or edge features) [15]. The time of each step for convolution procedure is

consistent with the time of different spiking sequences.

The global feature converting method is more robust to the noise of the images but needs more input

neurons. While the local feature converting method has clearer descriptions on the inner characteristics

of images, but are more sensitive to the size of kernels.

Since the global features and local features usually describe different scales of characteristics of the

image, in this paper, we make a combination of these two methods by making the OR operation to

local and global features to represent the original image. The effectiveness of this combination will be

introduced in Subsection 5.1.
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2.2 The hidden layers

The hidden layers are the keys for dynamic learning on the number of task neurons and the weights of

synapses based on the learning rules. The proportion of inhibitory neurons will be changed based on the

learning rules. Three hidden layers are constructed in the auto-encoder style (in which the second layer

has fewest neurons and connections compared to the other two layers which is inspired by the early stage

of visual pathway [16]).

One of the problems in learning synaptic weights is that when the weights in lower layers are changed,

some characteristics that the network has learnt will be erased by the new data. In order to solve this

problem, we set mwLi,j
as the meta weight among layer i and layer j, which is essential for synaptic

weight update, and will be discussed in more detail in Subsection 4.2.

2.3 The output layer

The output layer is for the final classification using excitatory neurons. The number of excitatory neurons

in this layer is the same with the number of output classes. One inhibitory neuron is used for inhibiting

other candidate classes in the WTA manner.

3 Neuron and synapse models in the multi-layer SNN architecture

3.1 The neuron model

There are various kinds of neurons in the human brain. Different neurons have very different morphologies

and functions, while they all play various important roles for realizing complex cognitive functions. In this

paper, we select two kinds of typical neurons, pyramidal cell and basket cell as the models of excitatory

neurons and inhibitory neurons in the multi-layer SNN architecture.

Different kinds of neuron models have been proposed, such as the Hodgkin-Huxley (H-H) model [17],

the Leaky Integrate and Fire (LIF) model [18], and the Izhikevich model [11]. For the purpose of efficient

computation, we use LIF model in this paper. A standard membrane potential equation of LIF proposed

in [18] is shown in (1) and (2):

Cm

dV

dt
= −gL (V − VL) + Isyn, (1)

τm
dV

dt
= − (V − VL) +

Isyn
gL

, (2)

where Cm is the membrane capacitance of the neuron, Isyn is the input current from the pre-synapses, V

is the membrane potential, gL is the conductance of membrane, VL is the steady-state leaky potential.

τm = C/gL stands for the period of voltage decay, and for different kinds of neurons, τm may be very

different [18]. The reason why we do not select H-H model (only leak conductance gL is kept, other

ion channels such as gNa+ , gK
+

and gCa2+ are ignored), is that the LIF model is with the minimal

computational complexity and has shown the majorities of the neuron reactions to the stimulus.

In this paper, the total received excitatory conductance is gE and received inhibitory conductance is

gI . And the reversal potential for corresponding channels are V E and V I . The model for each neuron

in SNN is described by (3)–(5). When V > Vth, a spike is generated and then the potential value is

reset. Following the long-term potentiation (LTP) mechanism, Vreset will be a little higher than VL for

both excitatory and inhibitory neurons. gE and gI are dynamic updated based on the synapse models.

Here VL = −70 mV, Vth =−50 mV, Vreset = –55 mV, τm = 20 ms, VL = −70 mV, VE = 0 mV, VI =

−70 mV and gL = 20 nS.

Isyni = −gE(V − VE)− gI(V − VI), (3)

τm
dV

dt
= − (V − VL)−

gE

gL
(V − VE)−

gI

gL
(V − VI) , (4)
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V → Vreset if V > Vth. (5)

3.2 The synapse model

The dynamics of the synapses are the keys for neural network training [19]. There are many models for

synaptic connections, and one of the most widely used models for spiking neurons is the conductance-based

synapse model [20]. It assumes that the pre-synaptic spikes affect post-synaptic membrane potential by

opening particular ion channels. Excitatory synapse will release glutamate, which binds AMPA receptors

(For the purpose of simplification, we only consider AMPA in this paper). Inhibitory synapse will release

neurotransmitter GABA which binds GABA receptor. Ion channels of these receptors will be opened after

binding of neurotransmitter, allowing ions flux through the channels, thus increasing the conductance of

the membrane. We can eventually have one value for representing the total excitatory and inhibitory

conductance onto a neuron. AMPA receptor and GABA receptor channels allow for different types of ions

to pass through, so the reversal potential to VE and VI are different. Without any pre-synaptic spikes,

conductance will decrease to zero with time constant τE and τI for excitatory and inhibitory conductance

respectively, as shown in (6) and (7):

dgEi
dt

= −
gEi
τE

, (6)

dgIi
dt

= −
gIi
τI

. (7)

Whenever a pre-synaptic neuron j spikes, it increases the conductance gi,j by an amount of wi,j . tjk
is the spiking time to neuron j. The membrane potential of neuron j reaches Vpeak if neuron j fires, or

become resting membrane potential when neuron j did not fire for a long time. Finally we can get (8)

and (9) in which τ(synE) = 2 ms, τ(synI )
= 5 ms. The connectivity weight of the synapses wi,j will follow

the STDP mechanism introduced in Section 4.

∆gEi (t) = −
gEi (t)

τE
∆t+

∑

j∈CE

wi,j

∑

k

δ
t,t

j

k

, (8)

∆gIi (t) = −
gIi (t)

τI
∆t+

∑

j∈CI

wi,j

∑

k

δ
t,t

j

k

. (9)

4 Brain-inspired learning rules in the multi-layer SNN

4.1 Learning rules

In order to improve the performance of traditional SNN models, here we introduce and incorporate seven

learning rules to guide the training procedure of SNN, as shown in Table 1.

(1) R1 and R2: Allocating new neurons or deleting extra neurons based on task complexity. In many

neural network models, the number of neurons for the network is static and cannot be changed. While

in the human brain, different number of neurons can be allocated for different information processing

procedures and tasks [21]. Based on this observation, we propose to dynamically allocate or delete neurons

based on the task requirement for achieving better computation performance. In this paper, the number

of neurons will increase or decrease automatically based on the complexity of the tasks (or the number

of learning classes) and the neurons will be removed while no active synapses are with them.

(2) R3 and R4: Synapse formation and elimination. Different from some of the existing artificial neural

network models in which neurons are fully connected to neighborhood layers, synapses are very dynamic

in the biological brain, with synaptic formation and elimination based on biological learning rules such

as STDP. In this paper, we introduce this mechanism to our multi-layer SNN model.
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Table 1 Seven learning rules used in the training procedure

R1 Allocating new Neurons.

R2 Deleting extra Neurons.

R3 Synapse formation.

R4 Synapse elimination.

R5

Background noise.

a: Uniform noise.

b: Possion noise.

R6

STDP rules.

a: bi-phasic STDP.

b: tri-phasic STDP.

c: voltage STDP.

R7

Introducing inhibitory neurons in SNN.

a: the anti-excitatory-type neurons.

b: the lock-excitatory-type neurons.

c: the percentage of the inhibitory neurons.

For synapse formation, let ni denotes an arbitrary neuron in the lower layer and nj denotes another

neuron in a higher neighbor layer, when the spikes appearance time for nj after ni spikes reach a threshold,

at least 5 consecutive times (without post-synaptic neuron fires before pre-synaptic neuron during these

consecutive times), then a new synapse will be formatted from ni to nj .

For synapse elimination, synaptic weights may decrease based on the STDP rule, and if the weight of

synapse is weak enough (with strength of 10−4), the specific synapse will be signed as eliminated.

The weights of synapses will be dynamically changed based on two considerations: the synapse model

introduced in Subsection 3.2 and the rules of R6 and R7. The initial weights of synapses are random

and the number of synapses is 50% full connections. Each inhibitory neuron in SNN plays a role on the

detection of the active level of excitatory neurons, and it will be combined with R5b to guide the network

for a balanced activity of each excitatory neuron. For example, some neurons are more active for the

class named classA, and when there is a new class named classB, 50% of the neuron activities for classA
will be inhibited so that new neurons which are inactive for classA could start to learn from classB.

In order to simulate the procedure of information processing of biological neurons, we also set different

refractory periods for excitatory and inhibitory neurons respectively in the multi-layer SNN model.

(3) R5a and R5b: Network background noise. For SNNs, the background noise will help network

training. Two kinds of noises (R5a and R5b) are tested separately in the whole process of training

procedure. The first one is uniform distribution random noise. Another one is Possion distribution

noise. The Possion distribution noise shows more biological characteristics [22] and indeed shows better

performance in the experimental task. The Possion distribution noise added into the network makes

the neurons more probable to fire at the beginning of the training which will contribute to a higher

convergence speed. In this paper, the background Possion noise is shown in (10). The mwLi,j
is the

meta weight among different neighborhood layers, which is defined in detail in Subsection 4.2. Csp (q)

is recorded by inhibitory neurons and works as the spike counter for the frequency of spikes of the qth

excitatory neuron in the ith layer:

P (t = k) =
λk

k!
e−λmwLi,j

tanh−1 (Csp (q)) , k ∈ T. (10)

(4) R6: STDP learning rules. Many implementations of the STDP rules have been proposed based

on the biological experiments [23]. In this paper, the Tri-phasic STDP, Bi-Phasic STDP and voltage-

dependent plasticity model are used to change the weight of synapses in the training procedure of the

SNNs. Detailed descriptions about STDP models will be discussed in Subsection 4.2.

(5) R7: The proportion of excitatory and inhibitory neurons. Many experimental results have shown

the great values of the excitatory neurons for feed forward network training [24], while there are even more
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types of inhibitory neurons in the brain. These inhibitory neurons play very important roles in higher

cognitive functions such as attention and control. Besides excitatory neurons, two types of inhibitory

neurons will be added into the proposed network: one is anti-excitatory neurons (anti-E [25]) which will

decrease the membrane potential of the post-synaptic excitatory neurons when the inhibitory neurons

fire, and the other is lock-excitatory neurons (lock-E [26]) which will stop the target excitatory neurons

from updating the synapse weights for a refractory time (so more synapses of unlocked excitatory neurons

will be updated based on R3) instead of just weaken them. The designed two kinds of specific inhibitory

neurons will be built to record the spike frequency of each excitatory neurons, and the plasticity level of

inhibitory neurons will be one third of the excitatory neurons in SNN for the quick convergence. The

analysis of proper proportions of inhibitory neurons in SNN will be introduced in Section 5.

4.2 STDP models and synaptic weight update

STDP is a kind of temporal learning rule in which the synapse weight will be updated based on timing

of spikes generated by pre-synaptic and post synaptic neurons. Many STDP models have been proposed

for network learning, such as Tri-phasic STDP, Bi-phasic STDP and voltage-dependent plasticity model.

The descriptions of them are shown in (11) [27], (12) [28] and (13) [29], respectively.

(1) Tri-phasic STDP is modeled as [27]

∆wi = A+exp

(

− (∆ti − tm)2

τ+

)

− A
−
exp

(

− (∆ti − tm)2

τ
−

)

, (11)

where A+ and A− are the learning rates. ∆ti is the delay from pre-synaptic spike to post-synaptic spike.

τ+and τ− are delays which control the rates of exponential decrease or potentiation. tm is the time

corresponding to the maximum value of ∆wi. Relevant parameters are set as the following: τ+ = 100,

τ− = 1000 and tmax = 15 [27].

(2) Bi-phasic STDP is modeled as [28]

∆wi =



















A+exp

(

∆ti
τ+

)

, if ∆ti < 0;

−A−exp

(

−∆ti
τ−

)

, if ∆ti > 0,

(12)

where A+ and A− are learning rates, and ∆ti is the delay time from pre-synaptic spike to post-

synaptic spike.

(3) Voltage-dependent plasticity is modeled as [29]

∆wi = −ALTDxi

[

ū− θ̄
]

+ALTPx̄i [u− θ]
[

ū− θ̄
]

, (13)

xi denotes the pre-synaptic spike train. u denotes the post-synaptic voltage. θ denotes a threshold for

synaptic weight change to occur, x̄, ū and θ̄ are the low-pass filtered values of x, u and θ, respectively.

Based on our experimental study, we find that for the purpose of improving the learning efficiency,

synaptic weight updates are not only based on the upper equations. Consideration of meta weight among

layers will be very helpful for speeding up the learning process. We define meta weight among layers,

denoted as mwLm,n
, to represent an additional weight to be multiplied to every synaptic changes among

layerm and layer n. For example, i and j are two arbitrary neurons from layerm and layer n, respectively,

and i is the pre-synaptic neuron. By STDP learning algorithms introduced above, their synaptic weight

should have a change represented as ∆wi. mwLm,n
is multiplied to ∆wi for the final actual change on

the synaptic weights between i and j, denoted as ∆w′
i = mwLm,n

×∆w.

Starting from the input layer to the output layer, mwLm,n
is set to 1 : 1 : 4 : 9 among each neighborhood

layers. The ratios are inspired by the fact that the lower layers describe basic features (e.g. edges or

angles) [30] while the higher layers are mainly for describing more complex features (e.g. the shapes

features), so meta weights in lower layers are lower compared to that of higher layers.
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Table 2 The comparison of classification results based on rules R1 to R6

Method R6a R6b R6c

Acc (%) Time (s) Acc (%) Time (s) Acc (%) Time (s)

R125a 68 304 72 264 65 453

R345a 64 140 67 114 46 165

R12345a 72 492 78 367 51 843

R125b 64 285 71 195 55 657

R345b 78 192 75 184 61 920

R12345b 84 177 87 141 69 586

5 Experimental results and analysis

5.1 The experiment settings and procedures

In this paper, MNIST hand writing digit dataset 1) is used to train and test the performance of proposed

multi-layer SNN. Pybrain [31] is used to simulate the models of neurons and synapses. The dataset

contains 10 classes of digit images from zero to nine and each image is with the size of 28× 28. The total

number of images is 60000 for training and 10000 for testing.

The experiment procedure can be divided in to three phases, namely, initialization phase, training

phase, and test phase.

During the initialization phase, the number of neurons in each layer is minimized (here 20 excitatory

neurons are assigned for initialization). The number and weights of synapses are crucial for the learning

performance. We recommend at least 100 tries for random distribution of these two parameters and

picking the best one as random seed. The proportion of excitatory and inhibitory neurons is specifically

designed based on learning rules. The maximum training time is set as 1000 s. In this phase, we convert

gray-scale values to spike trains in the following ways: Global converting method, in which all the values

are compared with a static threshold; Local converting method, in which the new values are formed after

convolution and static threshold variable processing. For each image, 200 iterations (1 ms between two

neighborhood iterations) are presented to the network.

During the training phase, the number of neurons and synapses, the weights of synapses will be changed

based on the integration of different learning rules. The training procedure will be stopped when the

changes of the weights (entropy) in the network is less than 5% per second or the maximum training time

has reached.

During the test phase, the structure and the variables of the network will not be changed. New data

which are not trained will be tested for the performance of the well trained classification network.

5.2 Results for integrating rule R1 to R6

In this paper, seven learning rules are incorporated into the network for a better performance on accuracy.

The rules are shown in Table 1, and the results of integrating R1 to R6 are shown in Table 2. For

different kind of background noises (R5a or R5b), the combinations of four rules (R1 to R4) show better

performance than the combination of two rules (R1 to R2 or R3 to R4). Among the rules R6a, R6b,

and R6c, the Tri-phasic STDP (R6b) shows the best accuracy and convergence time compared with the

bi-phasic STDP rule (R6a) and voltage-dependent STDP rules (R6c), respectively. The input spikes

are generated through the OR operations on the results from the local and global features generation

procedures introduced in Subsection 2.1.

5.3 Results for incorporating rule R7

The function of inhibitory neurons in output layer is similar with WTA procedure in artificial networks,

in which the neuron spikes in the output layers will give inhibition to other neurons. Two kinds of

inhibitory neurons (e.g. anti-E and lock-E types) are introduced into the hidden layers, and their different

1) LeCun Y, Cortes C, Burges C J. The MNIST database of handwritten digits. 1998.
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Figure 4 The accuracies of different proportions and

types of inhibitory neurons. Initial synaptic connection is

50%. All the results are based on the integrated rules of

R1, R2, R3, R4, R5b and R6b.

Figure 5 The convergence time of different proportions

and types of inhibitory neurons.

contributions to the learning results are observed. Different proportions (from 0% to 30%) and types

(anti-E and lock-E types)of the inhibitory neurons are tested in the experiments and the results are

shown in Figure 4. The best accuracy without inhibitory neurons is 86.7% (as shown in Table 2), and

when incorporating 5% to 20% inhibitory neurons, the accuracy for classification will be better. With

the increase percentage of inhibitory neurons involved in the SNN, the accuracies increased at first, but

decreased very obviously later. This shows that proper percentage of inhibitory neurons will help the

network achieve better performance on the accuracy. Finally the proportion of 85% excitatory neurons

and 15% inhibitory neurons obtains the highest accuracy (i.e. 90.4%) than other groups.

With more inhibitory neurons in the SNN model, the convergence time of the SNNs will be longer, as

shown in Figure 5. In addition, the network with lock-E type neurons shows better performance on the

convergence time than the network with anti-E type neurons. Take both convergence time and accuracy

into consideration, 5% to 15% of inhibitory neurons will be appropriate for good performances.

5.4 Higher performances for combining more rules and mechanisms

In the upper experiments, spikes are generated based on the combination of local and global features

converting method (based on the OR operation, as introduced in Subsection 2.1). In this paper, the

performances of three kinds of strategies are shown in Figure 6. As the result shows, the combination

method has better performance than the other two methods (only considering local or global features)

on both accuracy and convergence time (the learning rules here is the combination of R1, R2, R3, R4,

R6, R7b, and 15% anti-E inhibitory neurons). This result indicates that the proposed spike generation

method based on OR operation is rational and effective.

We attempt to validate the hypothesis that gradually incorporating more brain-inspired rules will help

to improve the learning accuracy. Figure 7 presents the accuracies based on the gradual integrations

of different learning rules. As can be observed from the experimental results, with more brain-inspired

learning rules (with careful selection) integrated into the learning procedure, higher accuracies can be

achieved.

6 Conclusion

Efforts for developing learning mechanisms of SNNs are mostly focusing on spike timing dependent

plasticity (STDP), while the actual learning process is supported by even more complex learning rules in

the biological brain. Borrowing more brain-inspired rules for SNN learning is expected to be effective for

improving its performance.
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Figure 7 The improving accuracies based on gradually

incorporating more brain-inspired learning rules.

In this paper, with careful consideration and selection, we incorporate seven brain-inspired learning

rules into a multi-layer SNN model. The results indicate a potential that with more carefully selected

brain-inspired rules integrated into the SNN model, higher accuracies can be achieved. Hence, many

learning rules from the brain really can add useful contributions for computational models of cognitive

tasks, and each of them have their own effects. In the future, with deeper understanding of the learning

mechanisms of the brain, more rules will be found and can be integrated together for developing a better

learning model and better performances of SNNs.
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